Interpolation by Convex Quadratic Splines

نویسندگان

  • David F. McAllister
  • John A. Roulier
چکیده

Algorithms are presented for computing a quadratic spline interpolant with variable knots which preserves the monotonicity and convexity of the data. It is also shown that such a spline may not exist for fixed knots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4 Generalized C 1 quadratic B - splines generated by Merrien subdivision algorithm and some applications

A new global basis of B-splines is defined in the space of generalized quadratic splines (GQS) generated by Merrien subdivision algorithm. Then, refinement equations for these B-splines and the associated corner-cutting algorithm are given. Afterwards, several applications are presented. First a global construction of monotonic and/or convex generalized splines interpolating monotonic and/or co...

متن کامل

Shape Preserving Surfaces for the Visualization of Positive and Convex Data using Rational Bi-quadratic Splines

A smooth surface interpolation scheme for positive and convex data has been developed. This scheme has been extended from the rational quadratic spline function of Sarfraz [11] to a rational bi-quadratic spline function. Simple data dependent constraints are derived on the free parameters in the description of rational bi-quadratic spline function to preserve the shape of 3D positive and convex...

متن کامل

A-splines: local interpolation and approximation using Gk-continuous piecewise real algebraic curves

We characterize of the Bernstein-Bezier (BB) form of an implicitly deened bivariate polynomial over a triangle, such that the zero contour of the polynomial deenes a smooth and single sheeted real algebraic curve segment. We call a piecewise G k-continuous chain of such real algebraic curve segments in BB-form as an A-spline (short for algebraic spline). We prove that the degree n A-splines can...

متن کامل

Convergence of Integro Quartic and Sextic B-Spline interpolation

In this paper, quadratic and sextic B-splines are used to construct an approximating function based on the integral values instead of the function values at the knots. This process due to the type of used B-splines (fourth order or sixth order), called integro quadratic or sextic spline interpolation. After introducing the integro quartic and sextic B-spline interpolation, their convergence is ...

متن کامل

Convex Preserving Scattered Data

We use bivariate C 1 cubic splines to deal with convexity preserving scattered data interpolation problem. Using a necessary and suucient condition on Bernstein-B ezier polynomials, we set the convexity preserving interpolation problem into a quadratically constraint quadratic programming problem. We show the existence of convexity preserving interpolatory surfaces under certain conditions on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010